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Abstract
The mixture models behave very well to cluster large samples of
continuous or categorical data. Adding a vicinity constraint permits
them to project data like factorial methods but in a nonlinear way.
In this paper we present a new model called Bernoulli Aspect
Topological Mapping (BATM) : a generative self-organizing map
to deal with binary data by a new automatic map smoothing and an
original initialization.

1 Introduction
The visualization of the main correlations and similarities
of a data sample is the goal pursued by the factorial data
analysis methods [1]. These methods often seek orthogonal
informative directions in the data cloud with most of the
projected variance as inertia is carriering sense. A well
driven decomposition of the inertia into projective planes
explains which data points are near each other and why they
are, i.e. which variables are concerned and how are strong
their local correlations. Although these methods are very
powerful, large data samples need new efficient methods.
In this context, the Kohonen maps [2] are well known in
the visual data analysis field, they generalize the factorial
methods such as the Principal Component Method (PCA) [1]
for continuous data. More generally, Self-Organizing Maps
(SOM) [2] are clustering methods with a vicinity constraint
on the classes to give a topological sense to the obtained
partition. So, class centers are drawn on the plane with
the data which are the nearer. The Generative Topographic
Mapping (GTM) [3] is a probabilistic Self-Organizing Map
with constrained means for continuous data, but it is not
relevant for categorical or binary data. To this end, some
recent models [4] [5] [6] were introduced by generalizing
GTM to the self-organization of the classical asymetric
discrete mixture models. Moreover, Hofman and Puzicha
have proposed the symetric aspect model approach [7] which
treats to classify simultaneously the rows and the colums of a
data matrix. This approach is beneficial in different domains
such as text mining, image segmentation [7]. Hofman has
proposed a topological aspect model [8] for contingency
table. In this paper, we study a new version for binary
data by proposing a new map smoothing and an original
initialization to accelerate the convergence of our method.
The probabilities are properly parametrized like the GTM to
induce a self-organization of the latent factors which bring

to us a new way to visualize discrete datasets of zero or one
multidimensional vectors.
The paper is organized as follows. Section 2 begins with the
development of the model and its estimation by maximizing
the loglikelihood. In Section 3, we focus on the experiments
to validate our model. An application on a binary dataset
often used as a benchmark and an illustrative experiment for
textual data are presented. Finally, Section 4 summarizes the
main points of this paper and future works in progress.

2 BATM model
The proposed model supposes as [9] independance of the
I × J cells xij ∈ {0, 1} from a binary matrix, by mod-
elling each unidimensional probability of the xij observed
as a mixture of K Bernoullian laws: Pr(xij = 1) =
E[xij ] ∝

∑
k πkiajk with πki the mixing probabilities such

as
∑
k πki = 1. For the dataset D = {xi}i=Ii=1 where

xi = (xi1, xi2, · · · , xiJ ) is a datum, the corresponding log-
likelihood is:

L(θ|D) =
∑

i

∑

j

log
[∑

k

πkia
xij
jk (1− ajk)1−xij ]

To induce a topological ordering to the probabilities, we
consider the K coordinates {sk}k=K

k=1 from a regular bidi-
mensional mesh which models a discretized plane where the
dataset is going to be layed out. The mesh is projected in
a higher space of L dimensions by a nonlinear transforma-
tion ξk = Φ(sk) = (φ1(sk), φ2(sk), · · · , φL(sk)) with L
basis functions ; we write Φ = (ξT1 |ξT2 | · · · |ξTK)T . The ajk
are then seen as the knots of a discrete nonlinear surface:
the Bernoulli laws are parametrized as a sigmoid function
ajk = σ(wTj ξk) where σ(u) = eu/(1 + eu) is the logistic
function. The loglikelihood becomes:

L(θ|D) =
∑

i,j

log
[∑

k

πkiσ(wTj ξk)xij (1− σ(wTj ξk))1−xij ]

This model is a binary version of the Probabilitic LSA or
pLSA [7] where its Multinomial hypothesis is replaced with
a constrained Bernoulli law on each cell of the data matrix
A = [xT1 |xT2 | · · · |xTI ]T . Unknow parameters are estimated
in the following section.

2.1 GEM estimation Inference of this model is done by
maximizing the loglikelihood which is intractable in an exact



closed form solution because of the non linearities from the
sigmoid functions. So we study the gradient-based approach
of the Generalized Expectation-Maximization (GEM) al-
gorithm from Dempster et al. [10] wich permits to deal
with the log of a sum. This approach assumes the like-
lihood completed by the knowledge of the partition Z =
{Z1,Z2, · · · ,ZK}:

L(θ, Z|D) =
∑

i

∑

j

log
[
πzii a

xij
jzi

(1− ajzi)1−xij ]

with zi the latent variable whose unknown value is in
{1, 2 · · · ,K}. The EM [11] algorithm is based on the max-
imization of the conditionnal mean of the complete loglike-
lihood given the data and the parameters of the preceeding
iteration. Having P (t)(Z|D) from the t-st step, we maxi-
mize in step t+ 1:

Q(θ|θ(t)) = EP (t)(Z|D)[L(θ, Z|D)]

=
∑

i,j,k

P
(t)
k|i,j,xij

{
log πki

+ xijξ
T
k wj − log(1 + exp(ξTk wj))

}

with: Pk|i,j,xij ∝ πkia
xij
jk (1 − ajk)1−xij the posterior

probability that xij was generated by the k-st aspect. A
closed form for maximizing this quantity doesn’t exist yet,
so we use a gradient approach to calculate w(t+1) =
argmaxwQ(θ|θ(t)), while direct derivation gives us:

π
(t+1)
ki = argmaxπkiQ(θ|θ(t)) =

∑

j

P
(t)
k|i,j,xij/J

By derivating the criterion, we get the Gradient vector Q
(t)
j

and the Hessian matrix H
(t)
j . As the Hessian is a block

diagonal matrix, we are able to increase the loglikelihood
with a Newton-Raphson ascent step:

w
(t+1)
j = w

(t)
j −H

(t)
j

−1
Q

(t)
j

Iterating π
(t+1)
ki and w

(t+1)
j converge to a maximum of

L(θ|D) that we write θ̂. To avoid overfitting and bad
numerical solutions, we add a bayesian [12] gaussian prior:
Q(θ|θ(t)) − α∑j w

T
j wj . The correction of the estimates is

done by adding: −αwj to the gradient Qj and −αIL to the
diagonal of the Hessian Hj . The value of the hyperparameter
α is most of the time manually chosen in the litterature as
0.01 for instance.

2.2 IRLS formulation We write the Newton-Raphson
process in a matrix form which sounds like an Iteratively
Reweighted Least Squares (IRLS [13]) step. For j from 1 to

J :

Q
(t)
j = ΦT

[
R

(t)
j Aj −G(t)

j a
(t)
j

]
− 0.01w

(t)
j

H
(t)
j = −ΦTG

(t)
j F

(t)
j Φ− 0.01IL

We have R(t)
j the K × I matrix with a posteriory probabili-

ties P (t)
k|i,j,xij as cell values, the matrix G(t)

j is the diagonal

matrix with
∑
i P

(t)
k|i,j,xij as non null elements, Aj is the j-st

column of A, a(t)
j is a column vector with the a(t)

jk as j-st

component, F (t)
j is the diagonal matrix with a(t)

jk (1 − a(t)
jk )

on its diagonal, and IL is the L× L identity matrix.

To numerically accelerate the algorithm, a Bohning [14]
approach replaces the exact Hessian quite heavy to calculate
by one fixed matrix. For instance B = − I

4ΦTΦ − 0.01IL
which is such as H

(t)
j � B, i.e. H

(t)
j −B is a non-negative

definite, symetric matrix, and so we are still maximizing the
likelihood. This matrix gave a slow convergence so we pro-
pose a variational alternative algorithm with a closed form
maximization step contrary to the preceeding generalized
EM scheme.

2.3 Variational estimation Following the bound1 [15] for
log(1 + exp(ξTk wj)) we get the new criterion:

Q̃(θ|θ(t)) =
∑

i,j,k

P
(t)
k|i,j,xij

{
log πki + (xij − 0.5)ξTk wj

+ λ(εj)[(ξ
T
k wj)

2 − ε2j ] + 0.5εj − log(1 + exp(εj))
}

with λ(εj) = −tanh(0.5εj)/(4εj) such as Q(θ|θ(t)) ≥
Q̃(θ|θ(t)) where εj is a variational parameter to be found by
maximizing Q̃. By derivating this new criterion we get the
new Maximization step :

ε
(t)
j =

√
w

(t)
j

T
ΦTG

(t)
j Φw

(t)
j

I

w
(t+1)
j =

[
− 2λ(ε

(t)
j )ΦTG

(t)
j Φ− 0.01IL

]−1

ΦTR
(t)
j A′j

where A′j is the column vector with xij − 0.5 as i-st com-
ponents. Finally, we provided three main algorithms -and a
fourth one in the next section- to estimate the parameters of
the model. While discarding the ineffective simple gradient
steps, the IRLS algorithm gives the best loglikelihood in our
case as the experiments show in the next section.

1log σ(u) ≥ u/2 + λ(ε)(u2 − ε2) + log σ(ε)− ε/2 for the concavity
reasons.



3 Simulations
3.1 Initialization of the model Random trials are a so-
lution to local minima where an optimization algorithm is
trapped. One way to get the best convergence is to have a
good initialization. As Kohonen maps are generalizing Prin-
cipal Component Analysis, the first plane from this method
provides [16] an appealing first point for the parameters.
Let’s have (Xc

i , Y
c
i ) the continuous coordinates on the first

plane from a factorial projection as PCA [17], CA [18], LSA
[19] or even those from a nonlinear mapping like MDS [20].
Then, a regular mesh is drawn on this first projection with
each cell symbolizing a factor from the BATM model, and
so, xi is put in the z(0)

i -st cell where it falls into for this initial
plane. We initialize mixing probabilities as π(0)

ik ∝ h(k, z
(0)
i )

for a smoothing function like the vicinity one from the Ko-
honen’s map, i.e. h(k, z

(0)
i ) ∝ exp(−||sk − sz(0)

i

||2/σ) for
σ well chosen. Then:

a
(0)
jk =

∑
i π

(0)
ik xij + α

∑
i π

(0)
ik + Iα

for α > 0 well chosen whose goal is to avoid empty cells.
Finally, LP (0) is the K × J matrix with cell values equal to
log[a

(0)
jk /(1−a

(0)
jk )]. This matrix permits us to find the initial

W (0) matrix which column-aggregates the w(0)
j vectors, as a

the regression solution on the matrix Φ:

W (0) = [w
(0)
1 |w

(0)
2 | · · · |w

(0)
J ] = (ΦTΦ)−1ΦTLP (0)

Contrary to a self-organizing map for continuous data, we
have to deal with binay data where the continous coordinates
from the first factorial plane cannot be used as initial values
for our center classes. So, we have constructed those center
by clustering this coordinates and smoothing their hard
affectations.

3.2 Topological organization of the rows It can be inter-
esting to add a constraint on the rows to help convergence to-
wards a well organized state and accelerate the algorithm. As
a soft-max [21] solution appears heavy we propose a lighter
solution by adding a penalty term from the TNEM [22] ap-
proach. Roughly speaking, the idea behind this algorithm is
to cluster the data vectors with a spatial smoothing of the as-
pects components from the BATM model, as a Hidden Ran-
dom Field Model [23] [24] [25] does. This is written here:

Q̃(θ|θ(t)) = Q(θ|θ(t)) +
β

2

∑

i

πTi Vπi

where πi is the vector of the πki as components, and V is
the neighboorhood matrix from the self-organizing map, i.e.
Vk` = h(k, `), eventually replaced by the binary adjacency

matrix of the map, i.e. Vk` = 1 iff k is near `. This new step
is written:

π
(t+1)
ki =

∑
j P

(t)
k|i,j,xij + β π

(t+1)
ki

∑
` Vk` π

(t+1)
`i

J + β π
(t+1)
i

T
Vπ

(t+1)
i

which is solved by iterating this equality and reinjecting in
the right member old current values until convergence. We
obviously retrieve the nonconstrained estimation when β is
zero. As we discard the entropy term, we end to a new
constrained algorithm called TNEM2, more general than
the original TNEM one: it can be applied to any model
with probabilities to induce thei topographic smoothing. An
alternative topological constrained clustering of the rows is
to add a parametrization from the GTM approach for the
probabilities πki. The function to be maximised on the rows
is then:

QI(θ|θ(t)) =
∑

i,j,k

P
(t)
k|i,j,xij

{
ξTk wi − log

∑

`

exp(ξT` wi)
}

where the wi are the new unknown parameters that we
are seeking for. We do a Newton-Raphson ascent as in
the preceeding part, by looping over the I rows of the
data matrix, and calculating the gradient vector Q

(t)
i =

JΦT (π
(t+1)
i − π

(t)
i ) and the Hessian matrix H

(t)
i =

−JΦT (Fi − π(t)
i π

(t)
i

T
)Φ where F (t)

i is the diagonal matrix
with π(t)

ki as non zero cell values. The parameters are ini-
tialized to w(0)

i , as before, by using a regression step over
the new matrix LP (0)

I whose cells are the logarithm of the
probabilities π(0)

ik . Finally, we end to a fourth algorithm
IRLS+TNEM2 with the IRLS loop for the columns and the
TNEM2 step for the rows. We explain in the next section
how this process behaves well in practice.

3.3 Post-processing of the final map The final map
shows a mesh of spacially well organized class centers where
one can place each data sample in its nearer center. For clas-
sical self-organizing maps one uses an Euclidian distance be-
tween the center vector and the data vector. Here, the model
permits a probabilistic alternative as we have the probability
that a data was generated by an aspect, so each data xi can
be affected to the maximum a posteriori (MAP) center, i.e.
ẑi = argmaxkπ̂ki. In the same way, each variable, corre-
sponding to the j-st component, can be affected to the center
of label ẑj = argmaxj âjk. So it induces the bidimensional
positions pi = sẑi and pj = sẑj . An other way to use the
final map is to project each data sample as a mean value [3]
instead of the preceeding MAP value. This means the posi-
tions p̃i =

∑
k π̂kisk and p̃j =

∑
k(âjk/

∑
` â`j)sk.

3.4 Experiments We experiment our model on several
database to validate our approach. For exemple, on the Zoo



stingray bass
catfish
chub
dogfish
herring
pike
piranha
tuna

seawasp carp dolphin seal
haddock porpoise
seahorse
sole

octopus clam pitviper sealion
starfish seasnake

slowworm
crayfish crab frog platypus mink
lobster scorpion frog

slug newt
worm toad

tuatara aardvark boar
bear cheetah
mole leopard
opossum lion

lynx
mongoose
polecat
puma
raccoon
wolf

flea tortoise hare antelope
gnat vole buffalo
honeybee deer
housefly elephant
ladybird giraffe
moth oryx
termite
wasp

crow kiwi ostrich gorilla cavy calf
duck penguin rhea squirrel goat
gull swan wallaby hamster
hawk pony
skimmer pussycat
skua reindeer

chicken fruitbat girl
dove vampire
flamingo
lark
parakeet
pheasant
sparrow
vulture
wren

Figure 1: A BATM 8× 8 table for the Zoo dataset.

database2 which counts 101 animals with seven classes of
species and 21 binary re-coded characteristics. The BATM
method ends to a well organized map on Figure 1 where
we recognize the seven classes that BATM has projected
on its map. The table colouring is done by hand with
the help [26] from a hierarchical clustering algorithm [27].
The loglikelihood from the four presented algorithms is
given on Figure 3 for the Zoo dataset, demonstrating the
superiority of the classical IRLS compared to more recent
algorithms in alternative. However overfitting can lead to
a not enought smooth solution and we prefer using the
IRLS+TNEM2 approach because of its efficiency despite
its smaller loglikelihood. Its lower value comes from the
penalization term which helps a quick auto-organization of
the rows as can been seen here when it stops very early
before the three other given algorithms for a same stopping
criterion (relative loglikelihood below the threshold 10E-5).
The initialization step from a Correspondence Analysis [18]
is illustrated on Figure 2, demonstrating the interest of a self-
organizing map: while the linear factorial method is not able
to show the seven classes on the first factorial plane, our
BATM map extracts theses classes and finds there statistical
links thanks to the vicinity property. A textual dataset
is projected by the BATM method. The dataset is a sample
from the Classic3 [28] file which counts three classes from
MEDLINE, CISI, CRANFIELD. We select 450 documents

2ftp://ftp.ics.uci.edu/pub/machine-learning-databases/zoo/zoo.names

aardvark

antelope

bass

bearboar

buffalo

calf

carp

catfish

cavy

cheetah

chicken

chub

clam

crab

crayfish

crow

deer

dogfish

dolphin

dove

duck

elephant

flamingo

flea

frog

frog

fruitbat

giraffe

girl

gnat

goat
gorilla

gull

haddock

hamster

hare

hawk

herring

honeybee
housefly

kiwi

ladybird

lark

leopardlion
lobster

lynx

mink

molemongoose

moth

newt

octopus

opossum

oryx

ostrich

parakeet

penguin

pheasant

pike piranha

pitviper

platypus

polecat

pony

porpoise

puma

pussycat

raccoon

reindeer
rhea

scorpion

seahorse

seal

sealion

seasnake seawasp

skimmerskua

slowworm

slug

sole

sparrow

squirrel

starfish

stingray

swan

termite

toad

tortoise

tuatara

tuna

vampire

vole

vulture

wallaby

wasp

wolf

worm

wren

Figure 2: Initialization of the BATM map for the Zoo dataset.
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Figure 3: The four loglikelihood curves from the IRLS,
IRLS+TNEM2, Bohning (end not shown) and variational
gradient are drawn from the top to the bottom of the graph.

0

0

0

0

0 0

0

0

0

0 0

00

00

0
0

0

0

00

0

0

0

0

0
0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0

0

0

0

0 0

0

00
0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0
0

0
0

0
0

0

0

0

0

0

00
0

0

0

0

0
0

0

0

0

0

0

0

0

0
0

0
0

0
0

0

0

0
0

0

0
0

00

0

0

0

0

0

0

0

0

0

0

0

0

0
0

1

1

1

1

1

1

1

1

1

1

1

111

111

1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

11
1

1

1

1
1

1
1

1

1

1

1

1

1

1
1

1

1
1

1

1
1
1

1

1

1

11

1

11

1

1
1

1

11
1

1

1

1

1
11

1

1 1 1

11

1

1

1

1
1

1

1

1

1

1
1

1
1

11

1
111

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1 11

1

11

1 1

1

11

1

1

1

1

1
1 1
1

1

1

1

11

22

2

2
2

2

22

2
2

2

2

2
2

2

2

2
2 222

2

22
2

2

2
2

22 22

2
2

2 2

2

2

2

2

2

2

2

22

2

2

2

2

22 2

2
2

2 2
22

2

2

2

2 2

2

2 2

2

2
2

2
2

2

2

22

2

2

2

2
2

2
2

2

2

2

2

2

22

2

2 2

2

2

2 2
2

2 2
2

2

2

2

2

2

22

2

2

2 2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

Figure 4: Mean projection for the Classic3 sample.



from this file, by randomly drawing 150 documents from
each class. Then we select the more frequent words over
30 from all the vocabulary of 4303 terms and we end to a
matrix with approximately 450 rows and 170 columns while
discarding the empty rows. We show the mean positions for
the label of the corresponding documents in Figure 4. We
are able to see the three classes almost well separated by our
non linear mapping.

4 Conclusion and discussion
We have presented a new self-organizing map model for bi-
nary data as can be found in the image or textual domain.
New results for the initialization of a generative mapping
method of qualitative data was introduced too. We are now
working on the model to deal with bigger matrix. Adding a
topological constraint or an entropy scheme on the mixing
probabilities should avoid the initialization step. Finally, an
alternative to the BATM model is for instance choosing3 a
new E(xij). The BATM model shall be extended to other
data type too, as it is proposed in the appendix section. Es-
timation can also be improved by finding the best hyperpa-
rameter β or working on the variational formulation. The
first interest is to obtain an alternative to a more classical
mixture model by a latent variable formulation which leads
us a new point of view to understand the contents of the data.
To conclude, the simultaneous clustering of the rows and
the columns from a numerical data matrix is efficiency per-
formed by a recent generative Block Mixture model [29, 30],
so we are currently extending this model to the projection
of discrete data. One main perspective of our approach is to
draw well defined and well readable non linear biplots for
large datasets.

Appendix
When the data matrix is a contingency matrix, the Bernoulli
law is no longer valid, and a Multinomial or Poisson hypoth-
esis is generally taken. The soft-max parameter is then intro-
duced to deal with multinomial law when the probabilities
are constrained as in a topological ordering. This is written
in our case pj|k = ew

T
j ξk/

∑
j′ e

wT
j′ξk with

∑
pj|k = 1. So,

it induces the inversion of a full Hessian when optimization
is processed. No variational approach exists to resolve the
bottleneck. So, we propose a new way to deal with multino-
mial, by providing a simple trick. The main idea is to retrieve
our nonconstrained parameters by writting pj|k as a joint
Bernoulli law with new unknow parameters. This is nothing
else that supposing that this probability is the one of the cor-
responding j-st column from the data matrix where positive
values are now one, and each component is independently

3We have for instance: E(xij) =
P
k πkπi|kb

xij
jk (1− bjk)(1−xij) or

E(xij) =
P
k πka

xij
ik (1− aik)(1−xij)b

xij
jk (1− bjk)(1−xij).

drawn as a Bernoulli random variable. The following expres-
sion pj|k = pjk

∏
j′ 6=j(1 − pj′k) ' pjk with pjk ∈ [0, 1]

gives a valid solution to the multinomial estimation when
probabilities are all enought small ; as we have :

p
(t+1)
jk = argmaxpjk

∑

i

∑

j

∑

k

p
(t)
kijxij log[pj|k]

= argmaxpjk
∑

i

∑

j

∑

k

p
(t)
kijxij log

[
pjk

∏

j′ 6=j
(1− pj′k)

]

we are enable to retrieve the classical expression for multi-

nomial parameters, p(t+1)
jk =

P
i p

(t)
kijxijP

i

P
j′ p

(t)

kij′xij′
for a posteri-

ori probabilities p(t)
kij and inducing their automatic normal-

ization. As no more constraint is nedeed on every pjk the
sigmoid parametrisation pjk = σ(ξTk wj) is available for a
topological ordering of our new parameters, without soft-
max parameters, providing a new IRLS formula for multi-
nomial laws.
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